Application Notes

Event Manager

CONDITION on HDMI port I2

ACTION Turn on the project

RELAY 1

RS-232 LIV function

TPS LINK IR OUT IR IN

CONTROL RS-232 ETHERNET TX RX

MAX 30V, 1A

RELAYS AUDIO OUT

Event Manager

Application Notes
Event Manager – Application Notes

1. INTRODUCTION

1.1. Description

1.2. Definition

1.3. Supported Devices

1.4. Typical Applications

2. EVENT MANAGER – WHERE IS IT?

2.1. The Events Tab

2.2. Adding an Event – the Event Editor

2.3. Useful Tools

2.4. Further Features

3. THE CONDITION – EXPRESSIONS AND PARAMETERS

3.1. General Category

3.2. Video Category

3.3. Audio Category

3.4. Infra Category

3.5. GPIO Category

4. THE ACTION - EXPRESSIONS AND PARAMETERS

4.1. General Category

4.2. Video Category

4.3. Audio Category

4.4. RS-232 Category

4.5. Infra Category

4.6. Ethernet Category

4.7. GPIO Category

4.8. EDID Category

4.9. Relay Category

4.10. Sending a Message via an RS-232 Port

4.11. Sending a Message via a TCP/IP Port

4.12. Sending a Message via a UDP Port

5. TYPICAL CONNECTED DEVICES

5.1. Condition: Using a Pushbutton

5.2. Condition: Using a Motion Sensor

5.3. Condition: IR Signal Detection

5.4. Action: Controlling a Projector/Monitor

5.5. Action: Switching a Power Relay

5.6. Action: Supplying a LED Directly

5.7. Action: Controlling a Motorized Screen (Part #1)

5.8. Action: Controlling a Motorized Screen (Part #2)

6. TYPICAL APPLICATIONS – EXAMPLE DESCRIPTIONS

6.1. Details of Example 1

6.2. Details of Example 2

Document Information

Document revision: 1.2
Release date: 21-08-2018
Editor: Laszlo Zsedenyi

Contact Us

sales@lightware.com
+36 1 255 3800
support@lightware.com
+36 1 255 3810

Lightware Visual Engineering LLC.
Peterdy 15, Budapest H-1071, Hungary
www.lightware.com

©2018 Lightware Visual Engineering. All rights reserved. All trademarks mentioned are the property of their respective owners. Specifications subject to change without notice.
1. Introduction

The Event Manager is a smart, built-in feature in the Lightware HDBaseT(TM) ¹ compatible TPS extender family, the MODEX line and in certain matrix switchers like the MMX6x2-HT200 series. The feature is available through the Lightware Device Controller (LDC) software. In the first chapter we would like to introduce the most important features:

- **Description**
- **Definition**
- **Supported Devices**
- **Typical Applications**

1.1. Description

The Event Manager was developed to handle tasks from the most simple to expert ones, like controlling the rolling shutter, the air conditioning system or the lights based on any condition changes on the media ports, such as a new source being connected or removed.

Event Manager application is continuously updated with additional features via firmware upgrades: a delay can be added between the condition and the action and more actions can be triggered by a single condition change. With the help of the ‘condition count’ and ‘action test’ features, the predefined settings can be tested before going live. The system can recognize infrared commands which can also be set as conditions, and commands can also be sent via Ethernet.

Event Manager saves time, cost and even installation space, which makes Lightware equipment the optimal choice in a number of different configurations.

1.2. Definition

The Event Manager reacts to internal status changes or user interactions without any external control system. The detected event is called Condition, the response is called Action.

1.3. Supported Devices

Currently¹ the following products include Event Manager:

<table>
<thead>
<tr>
<th>Device Type(s)</th>
<th>Supported Number of the Events</th>
</tr>
</thead>
<tbody>
<tr>
<td>UMX-TPS-TX120/130/140</td>
<td>20</td>
</tr>
<tr>
<td>MMX6x2-HT200/210/220</td>
<td>100</td>
</tr>
<tr>
<td>MMX4x2-HDMI/HT200</td>
<td>100</td>
</tr>
<tr>
<td>UMX-HDMI-140</td>
<td>20</td>
</tr>
<tr>
<td>HDMI-TPS-TX210/TX220</td>
<td>20</td>
</tr>
<tr>
<td>HDMI-TPS-RX110AY</td>
<td>100</td>
</tr>
<tr>
<td>SW4-TPS-TX240</td>
<td>20</td>
</tr>
<tr>
<td>SW4-OPT-TX240RAK</td>
<td>20</td>
</tr>
<tr>
<td>HDMI-3D-OPT-TX210A/TX210RAK</td>
<td>20</td>
</tr>
<tr>
<td>WP-UMX-TPS-TX120-US/130-US</td>
<td>20</td>
</tr>
<tr>
<td>DVI-HDCP-TPS-TX210/TX220</td>
<td>20</td>
</tr>
<tr>
<td>DP-TPS-TX210/TX220</td>
<td>20</td>
</tr>
<tr>
<td>MODEX</td>
<td>32</td>
</tr>
</tbody>
</table>

¹ HDBaseT™ and the HDBaseT Alliance logo are trademarks of the HDBaseT Alliance.

² Currently: on the day of publishing this document.
1.4. Typical Applications

Example 1

In the first example if a signal is detected on the HDMI input port of the UMX-TPS-TX140, the listed actions are launched automatically:

- The HDMI input will be selected to transmit.
- The projector will be switched on.
- The projection screen will be rolled down.

<table>
<thead>
<tr>
<th>Condition</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The detailed description of this example can be found in the Details of Example 1 section.

Example 2

In the second example if a button is pressed on the panel, the following actions are launched by the transmitter automatically:

- The related input is going to be selected to transmit.
- The HD display is going to be switched on.

<table>
<thead>
<tr>
<th>Condition</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The detailed description of this example can be found in the Details of Example 2 section.
2. Event Manager – Where is it?

This feature is the part of the Lightware 3 protocol, therefore all settings can be arranged in the protocol tree or set by sending LW3 commands. To provide a user-friendly method for setting the necessary parameters, the feature is implemented in the Lightware Device Controller software with numerous useful features.

- The Events Tab
- Adding an Event – the Event Editor
- Useful Tools
- Further Features

2.1. The Events Tab

The location is the same in all cases in the software: navigate to the Control submenu and select the Events tab.

- Event Lines
- Each line means an Event: a Condition and an Action. The green line means the Event is enabled and both the Condition and the Action are set properly.

- Export and Import Buttons
- The Events (with all their settings) can be saved into a file and can be imported. See more details in the Import / Export section.

- Factory Defaults
- All the Events can be deleted by pressing this button (a confirmation window will pop up before deleting).

- Event Pages
- 10 pieces of Events are listed at once.

- Show Advanced Expressions
- Toggle the display mode of the Conditions and Actions shown in the list (see below).

- Condition
- Displays the expression shown in Wizard mode or the exact LW3 path and node.

- The Name of the Event
- It can be edited by the user in the Event Editor. See also The Name of the Event section.

- Switch
- The Event can be enabled or disabled.

- Edit Button
- Press the button to open the Event Editor and set all the parameters.

- Clear Button
- Delete the settings of the given Event.

- Condition Test
- If the Condition is detected, the green indicator is lit for three seconds and the counter is increased. See also the Testing the Settings section.

- Delay Settings
- The Action can be scheduled to follow the Condition after the set time value. See also the Delaying the Action after Detecting the Condition section.

- Action
- Displays the expression shown in Wizard mode or the exact LW3 path and node.

- Action Test
- The counter works the way same as with the Condition test, but in this case the Action can be tested by pressing the Test button.
2.2. Adding an Event – the Event Editor

Press the Edit button in the desired Event line to open the Event Editor window.

INFO: The Condition test, Delay, and Action test features are described in the next sections.
2.2.1. The Wizard Interface

The most often used method to arrange the settings of an Event is to use the Wizard mode.

Setting the Condition

1. Open the Event Editor by pressing the Edit button in the desired Event line. The default tab is the Wizard mode.
2. Select the desired Category from the left panel (Condition section).
3. Select the desired Expression.
4. In most cases further parameters have to be set (e.g. port number) which are displayed in a new line.
5. Check the entered parameters and press the Apply button to store the Condition settings.
6. Check the Enabled option in the top line of the Event Editor.

ATTENTION! Do not forget to press the Apply button when the Condition is arranged.

Setting the Action

1. Open the Event Editor by pressing the Edit button in the desired Event line. The default tab is the Wizard mode.
2. Select the desired Category from the right panel (Action section).
3. Select the desired Expression.
4. In most cases further parameters have to be set (e.g. port number) which are displayed in a new line.
5. Check the entered parameters and press the Apply button to store the Condition settings.
6. Check the Enabled option in the top line of the Event Editor.

ATTENTION! Do not forget to press the Apply button when the Action is arranged.

TIPS AND TRICKS: You do not have to set the Condition/Action again if it is the same as at another Condition/Action since it can be linked from a previously set Event on the Link tab.
2. Event Manager – Where is it?

2.2.2. The Advanced Interface

The most often used Conditions and Actions are available in Wizard mode. Sometimes a special parameter/method is needed to observe/call/set, in these cases the Advanced mode is the solution. This mode allows you to set any node of the LW3 tree as a Condition/Action expression so it is recommended only for expert users.

INFO: The Wizard and the Advanced modes can be used simultaneously; if the Condition is set in Wizard mode the Action can be set in Wizard or Advanced mode also and vice versa.

Setting the Condition

Step 1. Open the Event Editor by pressing the Edit button in the desired Event line. Select the Advanced tab on the left panel (Condition section). The LW3 protocol tree can be browsed on the left side and the currently selected Node is displayed above the tree. If a Node is opened all its child nodes are loaded in the Property drop-down menu.

Step 2. Navigate to the desired Node and select the Property. The corresponding node manual (descriptor) is also displayed. In most cases, further parameters have to be set, which will be displayed under the Property drop-down menu.

Step 3. Check the entered parameters and press the Apply button to store the Condition settings.

ATTENTION! Do not forget to press the Apply button when the Condition is arranged.

Setting the Action

Step 1. Open the Event Editor by pressing the Edit button in the desired Event line. Select the Advanced tab on the right panel (Action section). The LW3 protocol tree can be browsed on the left side and the currently selected Node is displayed above the tree. If a Node is opened, all its child nodes are loaded in the Property drop-down menu.

Step 2. Navigate to the desired Node and select the Property. The corresponding node manual (descriptor) is also displayed. In most cases, further parameters have to be set, which will be displayed under the Property drop-down menu.

Step 3. Check the entered parameters and press the Apply button to store the Action settings.

ATTENTION! Do not forget to press the Apply button when the Action is arranged.

TIPS AND TRICKS: You do not have to set the Condition/Action again if it is the same as at another Condition/Action since it can be linked from a previously set Event on the Link tab.
2.2.3. The Link Interface

The creation of this feature represents Lightware’s development processes: we received many feedbacks from the first users of the Event Manager about the missing and desired functions. The Link tool is a comfortable way to set Events faster by linking a Condition or Action which was defined at another Event previously, therefore:

- A Condition could trigger more Actions, and
- Different Conditions could launch the same Action.

This helps a lot when the Action or Condition which was used multiple time have to be changed. Thanks to the linking, only the original Condition or Action has to be changed and all linked ones will be updated automatically.

Linking a Condition or an Action

Step 1. Open the Event Editor by pressing the Edit button in the desired Event line. Select the Link tab on the desired panel (Condition or Action). All the Conditions/Actions will be listed which were set previously at other Events.

Step 2. Select the desired Condition/Action.

Step 3. Check the entered parameters and press the Apply button to store the settings.

ATTENTION! Do not forget to press the Apply button when the linked Condition/Action is arranged.
2.3. Useful Tools

2.3.1. Delaying the Action after Detecting the Condition

In most cases, the Action is performed immediately after the Condition is detected. However, sometimes a delay is necessary between the Condition and the Action. Therefore, the Event Manager contains the Delay panel with the below settings:

- **No delay**: when the Condition is detected, the Action is launched.
- **Simple delay**: when the Condition is detected, the Action is launched after the set time interval.
- **Still exists**: After the Condition was detected and the Delay time is over the Condition is checked again. If it still exists the Action is launched.
- **Continuously exists**: After the Condition was detected the Condition is checked continuously through the Delay time. If it is continuously existing the Action is launched.

2.3.2. Testing the Settings

If you have created a Condition or an Action you can test them. The feature is available at the list of Events and in the Event Editor window as well.

Testing a Condition

The counter displays the number of detections which can be reset to zero. If you trigger the Condition, the detected indicator is lit for three seconds and the counter is increased.

Testing an Action

The counter works the same as at the Condition test, but in this case the Action itself can be tested by pressing the Test button.

2.4. Further Features

Displaying the Manual of a Property

When using the Advanced tab in Event Editor, the Manual (Short information) of the currently selected Property is displayed. That can be used when setting exact parameters (e.g. volume level or Autoselect mode):

Incorrect Values

If you typed an incorrect value you will get a notice by displaying an exclamation mark.

The Name of the Event

The name of an Event can be set by typing the new name and clicking the Set button. The name can be 20 characters long at most and the following characters are allowed:

Letters (A-Z) and (a-z), numbers (0-9), special characters: hyphen (-), underscore (_), and space ().

Import / Export

The list of the Events can be easily imported and saved to a file. The feature allows creating different lists for different circumstances and applications, but it is also suitable for creating backups.

ATTENTION! The structure of the devices are different which is also valid for the software and firmware components. Therefore, the successful working of an exported/imported list of Events is guaranteed only in the same type of device and running the same Firmware version. Certain Events may be applied in different type of devices but this is not guaranteed.

The import/export feature is available on the Control/Events tab:

INFO: The exported file can be edited by a simple text editor e.g. Notepad, but this is recommended only for expert users.
3. The Condition – Expressions and Parameters

This chapter describes the Conditions which are listed in Wizard mode under the following groups:

- General Category
- Video Category
- Audio Category
- INFRA Category
- GPIO Category

Basic Rules

1. The port numbering can be different in the devices. To set the proper input/output port, please see the exact port numbers in the User's Manual of your device.

2. It may take some seconds to load all the parameters. Please wait until the Loading animation disappears from the bottom of the main screen before selecting a port/parameter.

3. The easiest way to set the parameters is to use the Lightware Device Controller software:
 a) Start LDC and connect to the device.
 b) Navigate to the Control / Events tab.
 c) Press the Edit button in the desired Event line to open the Event Editor.

 ATTENTION! The following sections include an aggregated list of all the Conditions. Some of the Conditions are available only at certain devices.

3.1. General Category

1.) TPS link state changes to Connected on a port
 PARAMETER: Port number (TPS input or TPS output)
 NOTE: The Condition may be triggered by plugging the TPS cable in, restarting/powering on the connected device, etc.

2.) TPS link state changes to Disconnected on a port
 PARAMETER: Port number (TPS input or TPS output)
 NOTE: The above Condition may be triggered by unplugging the TPS cable, restarting/powering off the connected device, etc.

3.) OPT link state changes to Connected on a port
 PARAMETER: Port number (OPT input or OPT output port)
 NOTE: The Condition may be triggered by plugging the fiber optical cable in, restarting/powering on the connected device, etc.

4.) OPT link state changes to Disconnected on a port
 PARAMETER: Port number (OPT input or OPT output port)
 NOTE: The above Condition may be triggered by unplugging the fiber optical cable, restarting/powering off the connected device, etc.

5.) Show me button pressed
 PARAMETER: N/A
 NOTE: This is the Show me button on the front panel (not the same as the Function button).

6.) Function button pressed
 PARAMETER: N/A
 NOTE: This is the Function button on the front panel (not the same as the Show me button).

3.2. Video Category

1.) Signal is detected on a port
 PARAMETER: Port number (input or output)
 NOTES:
 - Any port type can be selected which can carry a video signal (e.g. HDMI, DVI, TPS, OPT, etc.).
 - This Condition is about to check the video signal of a port, the audio is not checked. If you want to check the audio presence see the related sections under Audio category.

2.) Signal is not detected on a port
 PARAMETER: Port number (input or output)
 NOTES:
 - Any port type can be selected which can carry a video signal (e.g. HDMI, DVI, TPS, OPT, etc.).
 - This Condition is about to check the video signal of a port, the audio is not checked. If you want to check the audio presence see the related sections under Audio category.

3.) Signal type changes to DVI
 PARAMETER: Port number (output)
 NOTE: N/A

4.) Signal type changes to HDMI
 PARAMETER: Port number (output)
 NOTE: N/A

5.) Signal type changes to Undefined (no signal)
 PARAMETER: Port number (output)
 NOTE: N/A
3.3. Audio Category

Signal Detection – Important Note

Due to the structure of the audio ports, the signal detection works as follows:

- Analog audio port (Phoenix): shows that signal is always present.
- Analog audio port (3.5mm Jack): the signal is present if the plug is connected.
- Digital ports (HDMI, TPS, S/PDIF, etc...): audio stream presence is detected.

1.) Signal is detected on a port
 - PARAMETER: Port number (input or output)
 - NOTE: N/A

2.) Signal is not detected on a port
 - PARAMETER: Port number (input or output)
 - NOTE: N/A

3.) Signal type changes to PCM
 - PARAMETER: Port number (output)
 - NOTE: N/A

4.) Signal type changes to Compressed
 - PARAMETER: Port number (output)
 - NOTE: - Check the desired port specifications about the supported audio signal types.

5.) Signal type changes to HBR
 - PARAMETER: Port number (output)
 - NOTE: - Check the desired port specifications about the supported audio signal types.

6.) Signal type changes to Undefined (no signal)
 - PARAMETER: Port number (output)
 - NOTE: N/A

3.4. Infra Category

1.) Infra code recognized
 - PARAMETERS: - Port number (IR input)
 - IR code
 - NOTES: - The port can be a local IR port and/or a TPS port (which transmits the IR signal).
 - In order to select a value from the code list, the infra code has to be defined (learned) in advance in the Control menu, Infra / IR codes tab.

3.5. GPIO Category

1.) State changes to 'High'
 - PARAMETER: - Pin number (GPIO port)
 - NOTES: - To sense the status of a GPIO port, it has to be set as Input. Nevertheless, the state is shown when it is configured as output.
 - Because of the internal pull-up on the ports when there is nothing connected to the GPIO input, the state is High.
 - When detecting an external button press, the state will change to Low.

2.) State changes to 'Low'
 - PARAMETER: - Pin number (GPIO port)
 - NOTES: - To sense the status of a GPIO port, it has to be set as Input. However the state is shown when it is configured as output as well.
 - When there is nothing connected to the GPIO input, the default state is High.
 - When detecting an external button press, the state will change to Low.
The Action - Expressions and Parameters

This chapter describes the Actions which are listed in Wizard mode under the following groups:

- **General Category**
- **Video Category**
- **Audio Category**
- **RS-232 Category**
- **Infra Category**
- **Ethernet Category**
- **GPIO Category**
- **EDID Category**
- **Relay Category**
- **Sending a Message via an RS-232 Port**
- **Sending a Message via a TCP/IP Port**
- **Sending a Message via a UDP Port**

4.1. General Category

1.) **Turn off LCD backlight**
 - **PARAMETER:** N/A
 - **NOTE:** - This setting is stored, so when the device is rebooted, the backlight will be still off.

2.) **Turn on LCD backlight**
 - **PARAMETER:** N/A
 - **NOTE:** N/A

3.) **Blink LCD backlight**
 - **PARAMETER:** N/A
 - **NOTE:** - This setting is stored, so when the device is rebooted, the backlight will be still blinking.

4.) **Show text on LCD**
 - **PARAMETERS:**
 - Message text line 1
 - Message text line 2
 - Duration time (x10 ms); e.g. 200 means 2 seconds.
 - **NOTES:**
 - The accepted characters: a-z, A-Z, 0-9, and ' " + ! % / = () , . - : < > _ * + |
 - Two lines can be displayed, no text scrolling

5.) **Beep**
 - **PARAMETER:** - Duration time (x10 ms)
 - **NOTE:** N/A

4.2. Video Category

1.) **Switch input to output**
 - **PARAMETERS:**
 - Port number (input)
 - Port number (output)
 - **NOTES:**
 - Any port type can be selected which can carry a video signal (e.g. HDMI, DVI, TPS, OPT, etc.)
 - The Switching Action disables the Autoselect automatically if it was enabled previously.

ATTENTION! The following sections include an aggregated list of all the Conditions. Some of the Conditions are available only at certain devices.

2.) **Switch next input to output**
 - **PARAMETER:** N/A
 - **NOTES:**
 - The order is based on the port numbering (I1 → I2 → ... → In). E.g. if I3 is on the output and a condition triggers this action, I4 will be on the output.
 - The Switching Action disables the Autoselect automatically if it was enabled previously.

3.) **Enable autoselect on output**
 - **PARAMETER:** - Port number (output)
 - **NOTE:** N/A

4.) **Disable autoselect on output**
 - **PARAMETER:** - Port number (output)
 - **NOTE:** N/A

5.) **Load crosspoint preset**
 - **PARAMETER:** - Preset name
 - **NOTES:**
 - Define the preset in advance to list it in the drop-down menu.
 - The Switching Action disables the Autoselect automatically if it was enabled previously.

6.) **Mute output**
 - **PARAMETER:** - Port number (output)
 - **NOTE:** N/A

7.) **Unmute output**
 - **PARAMETER:** - Port number (output)
 - **NOTE:** N/A

8.) **Mute input**
 - **PARAMETER:** - Port number (input)
 - **NOTE:** N/A

9.) **Unmute input**
 - **PARAMETER:** - Port number (input)
 - **NOTE:** N/A
4.3. Audio Category

1.) Set volume
 PARAMETER: - Port number (analog audio input or output)
 - Volume
 NOTES: - The accepted value range is device-dependent. The supported interval can be found in the User's manual of the device, but in most cases, a workaround could also help, see the Displaying the Manual of a Property section.
 - Volume adjustment is only available at the analog audio ports.

2.) Increase volume
 PARAMETERS: - Port number (output)
 - Percent value
 NOTES: - Volume adjustment is only available at the analog audio ports.

3.) Decrease volume
 PARAMETERS: - Port number (output)
 - Percent value
 NOTES: - Volume adjustment is only available at the analog audio ports.

4.) Mute output
 PARAMETER: - Port number (output)
 NOTE: - Muting the audio at a video port will remove the audio stream from the HDMI signal, while the video will be still present.

5.) Unmute output
 PARAMETER: - Port number (output)
 NOTE: - N/A

6.) Mute input
 PARAMETER: - Port number (input)
 NOTE: - Muting the audio at a video port will remove the audio stream from the HDMI signal, while the video will be still present.

7.) Unmute input
 PARAMETER: - Port number (input)
 NOTE: - N/A

8.) Mute analog output
 PARAMETER: - Port number (output)
 NOTE: N/A

9.) Unmute analog output
 PARAMETER: - Port number (output)
 NOTE: N/A

10.) Mute HDMI output embedded audio
 PARAMETER: - Port number (output)
 NOTE: - Muting the audio at a video port will remove the audio stream from the HDMI signal, while the video will be still present.

11.) Unmute HDMI output embedded audio
 PARAMETER: - Port number (output)
 NOTE: N/A

12.) Change audio assignment
 PARAMETERS: - Port number (analog audio input port) or Embedded audio
 - Destination port (input or output)
 NOTE: N/A

13.) Switch input to output
 PARAMETERS: - Port numbers (audio input and output port)
 NOTE: - The Switching Action disables the Autoselect automatically if it was enabled previously.

14.) Switch next input to output
 PARAMETER: N/A
 NOTES: - The order is based on the port numbering (I1 → I2 → ... → In). If a condition triggers this action the following allowed input port will be switched to the output.
 - The Switching Action disables the Autoselect automatically if it was enabled previously.

15.) Enable autoselect on output
 PARAMETER: - Port number (output)
 NOTE: N/A

16.) Disable autoselect on output
 PARAMETER: - Port number (output)
 NOTE: N/A

4.4. RS-232 Category

1.) Send RS-232 message
 PARAMETERS: - Port number
 - Message text
 NOTES: - Any port type can be selected which can carry an RS-232 signal (e.g. TPS, OPT, etc.).
 - Control characters can be inserted into the defined text since the escaping is allowed in this method (the control characters are interpreted).
 - The detailed description of this action can be found in Sending a Message via an RS-232 Port section.

2.) Switch input to output
 PARAMETERS: - Port numbers (input and output port)
 NOTE: - Any port type can be selected which can carry an RS-232 signal (e.g. TPS, OPT, etc.).

3.) Mute output
 PARAMETER: - Port number
 NOTE: - Any port type can be selected which can carry an RS-232 signal (e.g. TPS, OPT, etc.).

4.) Unmute output
 PARAMETER: - Port number
 NOTE: - Any port type can be selected which can carry an RS-232 signal (e.g. TPS, OPT, etc.).
4.5. Infra Category

1.) Switch input to output

PARAMETERS: - Port numbers (input and output port)
NOTE: - Any port type can be selected which can carry an IR signal (e.g. TPS, OPT, local IR port, etc.)

2.) Mute output

PARAMETER: - Port number
NOTE: - Any port type can be selected which can carry an IR signal (e.g. TPS, OPT, local IR port, etc.)

3.) Unmute output

PARAMETER: - Port number
NOTE: - Any port type can be selected which can carry an IR signal (e.g. TPS, OPT, local IR port, etc.)

4.6. Ethernet Category

1.) Send TCP command

PARAMETERS: - Message
- IP address (destination device)
- Port number (destination device)

NOTES: - Control characters can be inserted in the defined text since the escaping is allowed in this method (the control characters are interpreted).
- See more information in Sending a Message via a TCP/IP Port section.

2.) Send UDP command

PARAMETERS: - Message
- IP address (destination device)
- Port number (destination device)

NOTE: N/A

4.7. GPIO Category

1.) Set output state to 'High'

PARAMETER: - Pin number (GPIO port)
NOTES: - To set the status of a GPIO port, it has to be set as Output.
- Always check the voltage level and the supported maximum current.
- The default direction is input and the level is High.

2.) Toggle output state

PARAMETER: - GPIO pin number
NOTES: - To set the status of a GPIO port, it has to be set as Output.
- Always check the voltage level and the supported maximum current.
- The default direction is input and the level is High.

3.) Set output state to 'Low'

PARAMETER: - GPIO pin number
NOTES: - To set the status of a GPIO port, it has to be set as Output.
- Always check the voltage level and the supported maximum current.
- The default direction is input and the level is High.

4.8. EDID Category

1.) Switch EDID

PARAMETERS: - Source EDID (Factory, User, or Dynamic EDID memory)
- Destination EDID (Emulated EDID memory of the input port)

NOTE: N/A

4.9. Relay Category

1.) Open contact on relay 1/2

PARAMETER: N/A
NOTE: N/A

2.) Close contact on relay 1/2

PARAMETER: N/A
NOTE: N/A

3.) Toggle contact on relay 1/2

PARAMETER: N/A
NOTE: N/A
4.10. Sending a Message via an RS-232 Port

ATTENTION! The below mentioned commands can be used to send messages, but responses are not received and not processed.

Sending a Message
Path: `/MEDIA/UART/<Pn>.sendMessage(<message>)`
This is the command listed in **Wizard mode** for sending a message. The command is for sending a text message in ASCII-format with an option for escaping control characters (e.g. `<CR><LF>`).

Escaping in the Message
DEFINITION: Indicating (highlighting) Control characters (e.g. Carriage return, Line feed) in a command means the **Escaping**. That also helps sending many commands at once like the following:

```
<command1><0d><0a><command2><0d><0a>
```

Legend:
'\x' = escaping; '0d' = carriage return; '0a' = line feed.

Example
```
> CALL /MEDIA/UART/P1.sendMessage(PWR0<0d><0a>)
```

Sending a Text Message
Path: `/MEDIA/UART/<Pn>.sendText(<message>)`
The command is available in **Advanced mode** and created for sending a text message in ASCII-format.

Example
```
> CALL /MEDIA/UART/P1.sendText(PWR0)
```

Sending a Binary Message
Path: `/MEDIA/UART/<Pn>.sendBinaryMessage(<message>)`
The command is available in **Advanced mode** and created for sending a binary message in HEX format.

ATTENTION! Control characters (e.g. `<CR><LF>`) are not processed, the escaping is not working in this case.

```
> CALL /MEDIA/UART/P1.sendBinaryMessage(0100000061620000cdcc2c40)
```

4.11. Sending a Message via a TCP/IP Port

ATTENTION! The below mentioned commands can be used to send messages, but responses are not received and not processed.

Sending a Message
Path: `/MEDIA/ETHERNET.tcpMessage(<IP_address>:<port_nr>=<message>)`
This is the command listed in **Wizard mode** for sending a message. The command is for sending a text message in ASCII-format with an option for escaping control characters (e.g. `<CR><LF>`).

Escaping in the Message
DEFINITION: Indicating (highlighting) Control characters (e.g. Carriage return, Line feed) in a command means the **Escaping**. That also helps sending many commands at once like the following:

```
<command1><0d><0a><command2><0d><0a>
```

Legend:
'\x' = escaping; '0d' = carriage return; '0a' = line feed.

Example
```
> CALL /MEDIA/ETHERNET.tcpMessage(192.168.0.20:5555=PWR0<0d><0a>)
```

Sending a Text Message
Path: `/MEDIA/ETHERNET.tcpText(<IP_address>:<port_nr>=<message>)`
The command is available in **Advanced mode** and created for sending a text message in ASCII-format.

Example
```
> CALL /MEDIA/ETHERNET.tcpText(192.168.0.20:5555=pwr_on)
```

Sending a Binary Message
Path: `/MEDIA/ETHERNET.tcpBinary(<IP_address>:<port_nr>=<message>)`
The command is available in **Advanced mode** and created for sending a binary message in HEX format.

Example
```
> CALL /MEDIA/ETHERNET.tcpBinary(192.168.0.20:5555=0100000061620000cdcc2c40)
```

4.12. Sending a Message via a UDP Port

ATTENTION! The below mentioned commands can be used to send messages, but responses are not received and not processed.

Sending a Message
Path: `/MEDIA/ETHERNET.udpMessage(<IP_address>:<port_nr>=<message>)`
This is the command listed in **Wizard mode** for sending a message. The command is for sending a text message in ASCII-format with an option for escaping control characters (e.g. `<CR><LF>`).

Escaping in the Message
DEFINITION: Indicating (highlighting) Control characters (e.g. Carriage return, Line feed) in a command means the **Escaping**. That also helps sending many commands at once like the following:

```
<command1><0d><0a><command2><0d><0a>
```

Legend:
'\x' = escaping; '0d' = carriage return; '0a' = line feed.

Example
```
> CALL /MEDIA/ETHERNET.udpMessage(192.168.0.20:5555=0100000061620000cdcc2c40)
```

Sending a Text Message
Path: `/MEDIA/ETHERNET.udpText(<IP_address>:<port_nr>=<message>)`
The command is available in **Advanced mode** and created for sending a text message in ASCII-format.

Example
```
> CALL /MEDIA/ETHERNET.udpText(192.168.0.20:5555=pwr_on)
```

Sending a Binary Message
Path: `/MEDIA/ETHERNET.udpBinary(<IP_address>:<port_nr>=<message>)`
The command is available in **Advanced mode** and created for sending a binary message in HEX format.

Example
```
> CALL /MEDIA/ETHERNET.udpBinary(192.168.0.20:5555=0100000061620000cdcc2c40)
```
5. Typical Connected Devices

5.1. Condition: Using a Pushbutton

DEFINITION: The below simple pushbutton is a dry contact with only one function: closing a circuit.

Step 1. Connect the wires to the button panel and the GPIO port as seen in the figure. The brown line is the ground which is common for both buttons.

Step 2. Set the Direction of the two GPIO pins to Input.

Step 3. The default Input level of the GPIO pins is High. When a button is pressed the circuit is closed and the given pin got Low state. That change can be used as a Condition in the Event Manager.

Step 4. When the button is released the level of the pin is changed to High again.

The Input level change can be also seen in LDC:

![Lightware Smart Device with GPIO](MEDIA/GPIO/P7.Input)

5.2. Condition: Using a Motion Sensor

DEFINITION: The below Motion sensor is such a device that keeps the connected circuit closed in default idle state. When the sensor gets activated (Alarm) the circuit is opened.

Step 1. Connect the wires to the motion sensor and the GPIO port as seen in the figure.

Step 2. Set the Direction of the GPIO pin to Input.

Step 3. The default Input level of a GPIO pin is High. When the Motion sensor gets activated (Alarm) the circuit will be opened and the GPIO pin level changes to Low. That change can be used as a Condition.

Step 4. When the circuit is closed by the motion sensor the level of the pin changes to Low again.

The Input level change can be also seen in LDC:

![Lightware Smart Device with GPIO](MEDIA/GPIO/P7.Input)
5.3. Condition: IR Signal Detection

The below example describes two ways of applying an incoming IR signal as a Condition. In both cases the Condition is processed in the smart TPS device.

Step 1. Setup the system as seen in the figure.

Step 2. Make the Smart TPS device learn the desired IR code (navigate to Control/Infra tab in LDC).

Step 3. Set the Repeat timeout and a Name for the code.

Step 4. The saved code can be used as a Condition (the name of the IR code is listed in the list of the parameters at the Event Manager).

Local IR Port – TPS IR Port

Since the TPS connection allows transmitting IR signal, the Condition can be set to sense the local or the TPS IR port. In above example the RC1 sends IR signal to the local port of the Smart TPS device, the RC2 sends IR signal to the IR receiver connected to the IR input port of the TPS extender. In last case the IR signal of the RC2 is transmitted from the TPS extender via the TPS connection to the Smart TPS device. When the Condition is set in the Event Manager, the available IR ports are listed, see the attached figure.

Infra Code Repeat Timeout (ms) parameter

Periodically received identical IR codes are recognized once in a timeout period. Remote controls can send identical IR commands periodically when a button is pressed and held. E.g. an ‘ON/OFF’ command and a ‘Volume +/-’ command require different repeat timeout values.

INFO: Not the whole IR code is stored in the devices but a generated hash code which is enough to identify the original code.

5.4. Action: Controlling a Projector/Monitor

5.4.1. Controlling via an Ethernet Port

The above example contains two Ethernet devices:
- The Relay device connected to the local Ethernet port (P1), and
- The Display device connected to the TPS Ethernet port (P3).

The Smart TPS device is able to send TCP messages to both devices via the local and the TPS Ethernet ports (Ethernet signal is also transmitted via the TPS connection). The message sending works by using the Event Manager as well.

Please see the Sending a Message via a TCP/IP Port section for more information.
5.5. Action: Switching a Power Relay

The Relay port of a Lightware device can be used to connect and control a Power Relay. A typical example can be seen in the below figure about how to switch a lamp:

Step 1. Setup the circuit as seen in the figure. Connect the wires to the Relay port.

Step 2. The default Connection of the Relay ports is Open. When the circuit is Closed, the lamp is powered on. This can be used as an Action.

The connection state can also be set in LDC:

The path of the node that controls the connection state: (C=close, O=open)

> /MEDIA/RELAY/P1.Output

5.6. Action: Supplying a LED Directly

The technical structure of the GPIO port allows supplying simple devices working at low power consumption. In below example a +5V LED is connected to a GPIO pin.

ATTENTION! A GPIO pin can supply at most 30mA (+5V) and the total load of the seven GPIO pins must not be more than 180mA. Always check the technical parameters of the third-party device to avoid overload.

5.7. Action: Controlling a Motorized Screen (Part #1)

The GPIO port of a Lightware device can be used to connect and control a Motorized Projection Screen. In this example the GPIO pins will be used as Outputs. A typical example can be seen in below figure:

Rolling the Screen

The Motorized Screen can be controlled via the COM(UP|DN) contact pins as follows:

- The screen rolls up: if the UP and COM pins are connected (DN is not connected to COM).
- The screen rolls down: if the DN and COM pins are connected (UP is not connected to COM).

Step 1. Setup the circuit as seen in the figure.

Step 2. Set the Direction of the GP6 and GP7 pins to Output.

Step 3. The default Output level of the GPIO pins is High. The screen control can be arranged by setting the GP6 and GP7 pins as Actions by the Event Manager, set as follows:

The path of the node that sets the output level: (L=low, H=high)

> /MEDIA/GPIO/P7.Output
5.8. Action: Controlling a Motorized Screen (Part #2)

The Relay port of a Lightware device can be also used to connect and control a Motorized Projection Screen. A typical example can be seen in below figure:

Rolling the Screen

The projection screen can be controlled via the Control contact pins as follows:

- **Roll down**: A1 and A2 pins are connected (the Relay is Closed).
- **Roll up**: A1 and A2 pins are not connected (the Relay is Open).

Step 1. Setup the system as seen in the figure.

Step 2. Connect the wires to the Relay port.

Step 3. The default Connection of the Relay ports is Open. When the Relay1 port is Closed the screen rolls down. If the Relay1 port is Open the screen rolls up. These can be used as Actions.
6. Typical Applications – Example Descriptions

The first chapter contains two simple applications of how the Event Manager can be used in practice. This chapter contains the details of how to connect and setup the devices:

- Details of Example 1
- Details of Example 2

6.1. Details of Example 1

The Desired Working Method

If signal is detected on the HDMI input port of the transmitter, then it:
- transmits the signal to the receiver,
- switches on the projector, and
- rolls down the projection screen.

Make sure that the desired ports are unmuted, unlocked and the port parameters are set properly – see also the figure below:

The above application contains a typical example of how to connect a projection screen and control via the GPIO port. For that kind of setup, a relay box is necessary which is installed between the projection screen and the transmitter.

To roll up/down the two projection screen pins have to be controlled, that is why GP6 and GP7 are connected to the Relay box. Both have to be in the indicated state to roll the screen.

GPIO Port Wiring and Settings

<table>
<thead>
<tr>
<th>Pin nr.</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>Ground</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wired to</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>Relay box</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Function</td>
<td>Relay box 5V power</td>
<td>Screen control 1</td>
<td>Screen control 2</td>
<td>Ground</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pin direction</td>
<td>output</td>
<td>output</td>
<td>output</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Roll up the screen</td>
<td>-</td>
<td>high</td>
<td>low</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Roll down the screen</td>
<td>-</td>
<td>low</td>
<td>high</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Conditions and Actions

You do not have to set the Conditions at each Event separately, only at one Event, then just Link the Condition as described in Linking a Condition or an Action section.

Delaying the Action

To avoid an unwanted system switch off, apply the Delay option at E5-E7 Events (e.g. Continuously exist, 1 minute); see also in Delaying the Action after Detecting the Condition section.
6.2. Details of Example 2

The Desired Working Method

If a button is pressed on the button panel
- transmit the incoming signal to the receiver,
- switch on the given LED on the button panel,
- switch on the HD display.

Make sure that the desired ports are unmuted, unlocked and the port parameters are set properly – see also the figure below:

GPIO Port Wiring and Settings

<table>
<thead>
<tr>
<th>Pin nr.</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>Ground</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wired to</td>
<td>Button panel</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>Button panel</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Function</td>
<td>VGA LED</td>
<td>VGA button</td>
<td>HDMI LED</td>
<td>HDMI button</td>
<td>Ground</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pin direction</td>
<td>output</td>
<td>input</td>
<td>output</td>
<td>input</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>High</td>
<td>LED lights</td>
<td>default</td>
<td>LED lights</td>
<td>default</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Low</td>
<td>LED is dark</td>
<td>input select</td>
<td>LED is dark</td>
<td>input select</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Conditions and Actions

You do not have to set the Conditions at each Event separately, only at one Event, then just Link the Condition as described in Linking a Condition or an Action section.

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Trigger</th>
<th>Condition</th>
<th>Action</th>
<th>What Happens</th>
</tr>
</thead>
<tbody>
<tr>
<td>E1</td>
<td>VGA button is pressed</td>
<td>GPIO state changes to 'Low' on P2</td>
<td>Switch video input I1 to output O1</td>
<td>Switch VGA to TPS output</td>
</tr>
<tr>
<td>E2</td>
<td>VGA button is pressed</td>
<td>GPIO state changes to 'Low' on P2</td>
<td>Set GPIO output state to 'High' on P1</td>
<td>Switch on the VGA LED</td>
</tr>
<tr>
<td>E3</td>
<td>HDMI button is pressed</td>
<td>GPIO state changes to 'Low' on P4</td>
<td>Set GPIO output state to 'Low' on P3</td>
<td>Switch off the HDMI LED</td>
</tr>
<tr>
<td>E4</td>
<td>HDMI button is pressed</td>
<td>GPIO state changes to 'Low' on P4</td>
<td>Send RS-232 message 'pwron' on P2</td>
<td>Switch on the HD display</td>
</tr>
<tr>
<td>E5</td>
<td>HDMI button is pressed</td>
<td>GPIO state changes to 'Low' on P4</td>
<td>Send RS-232 message 'pwron' on P2</td>
<td>Switch on the HD display</td>
</tr>
<tr>
<td>E6</td>
<td>HDMI button is pressed</td>
<td>GPIO state changes to 'Low' on P4</td>
<td>Send RS-232 message 'pwron' on P2</td>
<td>Switch on the HD display</td>
</tr>
<tr>
<td>E7</td>
<td>HDMI button is pressed</td>
<td>GPIO state changes to 'Low' on P4</td>
<td>Send RS-232 message 'pwron' on P2</td>
<td>Switch on the HD display</td>
</tr>
<tr>
<td>E8</td>
<td>HDMI button is pressed</td>
<td>GPIO state changes to 'Low' on P4</td>
<td>Send RS-232 message 'pwron' on P2</td>
<td>Switch on the HD display</td>
</tr>
<tr>
<td>E9</td>
<td>No signal is detected</td>
<td>Video signal is not detected on O1</td>
<td>Send RS-232 message 'pwroff' on P2</td>
<td>Switch off the HD display</td>
</tr>
<tr>
<td>E10</td>
<td>No signal is detected</td>
<td>Video signal is not detected on O1</td>
<td>Set GPIO output state to 'Low' on P1</td>
<td>Switch off the VGA LED</td>
</tr>
<tr>
<td>E11</td>
<td>No signal is detected</td>
<td>Video signal is not detected on O1</td>
<td>Set GPIO output state to 'Low' on P3</td>
<td>Switch off the HDMI LED</td>
</tr>
</tbody>
</table>

Delaying the Action

To avoid an unwanted system switch off apply the Delay option at E9-E11 Events (e.g. Continuously exist, 1 minute); see also in Delaying the Action after Detecting the Condition section.